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Several numerical schemes are described for accurately discretizing the radial dependence of 
the magnetohydrodynamic (MHD) energy of a toroidal plasma configuration. Compared with 
previous schemes, the new methods have significantly improved mesh convergence properties 
for the energy, magnetic axis, and other equilibrium parameters. This has favorable implica- 
tions for both stability analysis, where small numerical errors in the energy may significantly 
affect the computation of marginal points, and transport applications, for which equilibrium 
computations on coarse meshes are desirable. &? 1990 Academic Press, Inc. 

1. INTRODUCTION 

A variety of codes that use spectral methods for computing three-dimensional 
MHD equilibria have been developed [i-4]. The spectral convergence of the finite 
Fourier representations for the cylindrical coordinates R and Z has been improved 
[l, 21 through the introduction of a renormalization stream function, 1. The 
convergence with the radial mesh spacing, ds, of such characteristic equilibrium 
quantities as the energy (W) and the axis shift (d) also tends to improve in 
conjunction with accelerated spectral convergence. In general, however, the 
dependence on As of W, A, and other equilibrium parameters remains strong 
enough to necessitate very refined radial grids, in conjunction with mesh extra- 
polations, to predict the actual (As -+ 0) equilibrium configuration [ 1, 21. 
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When the spectral components of the equilibrium equations are truncated at a 
very small number of modes, they can be solved “exactly” (i.e., for As rv 0) by using 
an adaptive spatial integration technique [3]. As the number of 
required to describe most realistic configurations increases (m >, 2, 
and II are poloidal and toroidal mode numbers, respectively), the convergence of 
this technique deteriorates, and methods that employ hnite radial gri 
necessary. The present investigation is concerned with improving the r 
convergence properties of these grid techniques by applying accu 
differencing algorithms to the radially discreti D en 

The concept of improved mesh convergence illust by considering the 
radial mesh dependence of the magnetic energy, or a renting scheme that 
uses second-order central sums and differences to evaluate quantities and their s 
derivatives, respectively, at the half-mesh points in radius, it follows that 

W(As)= W, 1 + c cq(As)” 
! 

(1) 
/=l 

ere, the values of a, depend only on the finite-difference r 
spectral mode truncation used to compute W, but they are i 
radial mesh convergence is improved whenever the value in Eq. (I) is 
decreased without increasing the order of the finite-difference ap~rQx~mat~on for W. 
(The restriction to second-order differencing is imposed to maintain a reasonable 
temporal convergence rate for the iterative technique used to solve the finite- 
differenced moment equations. This also avoids possible numerical errors around 
rational surfaces where the magnetic field may be discontinuous but i~te~rab~~.~ 
A smaller /cl1 / corresponds to values of W computed on a finite mesh, which are 
nearer to W, and thus give a better approximation to the act 

The values of / CL[I in Eq. (1) may be affected by the c 
coordinate, s, in relation to the spatial distribution of the to 

(s). only the two choices Q1 CC s and QZ cx s2 are compared here. The coo~d~~~ate 
s is scaled to vary between s = 0 at the magnetic axis and s = 1 at the plas 
boundary. Near the critical point s = 0 of the polar “flux” coordinate system, 
incremental volume element V’ = dV/ds scales with s as Vi = constant for 
v; K s for q, so that locally D1 zoning is an equal volume distribution of points 
and Q2 zoning is similar to a polar distribution. In particular, @I zoning tends to 
yield more accurate values for volume-integrated quantities such as W, whereas the 
polar zoning yields better resolution near the magnetic axis, s = 0. Thus, there is a 
balance between the improvement in the computed values of W that may be 
afforded by the QI zoning and the accurate representation of the magnetic axis and 
other near-axis quantities given by the ~43~ zoning. This implies that 
convergence properties of other equilibrium quantities besides W shoul 
considered in formulating a criterion for convergence improvement. 

The type of radial zoning that yields both good spatial resolution and rapid 
temporal convergence of the MHD equilibrium equations depends somewhat on 
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the particular differencing scheme used to represent W. While a detailed analysis of 
this correlation is diflicult, there is numerical evidence which suggests that the 
correct spatial discretization of the MHD force near the magnetic axis is critical for 
suppressing numerically unstable eigenvalues associated with the logarithmic 
singularity of the polar Laplacian near s = 0. One successful means for treating this 
critical point is presented in Section 3. It should be noted that unstable spatial 
eigenvalues manifest themselves as a lack of “temporal” convergence in the second- 
order Richardson iteration scheme used here [l] to “evolve” the MHD forces to 
an equilibrium state. 

2. FINITE-DIFFERENCE REPRESENTATIONS FOR W 

The magnetic portion of the MHD energy is 

w= p d3X: (2) 

where B2 = BeBe t- B5B, = B’, $ B; + Bi, Be = li/&, B5 = 1,/A, B, = Beg,, + 

B’ge,) B, = Begs, + Brg,,, I, = x’ - /2,, Is = @’ + &, and d3x = & do dc ds. Here, il 
is the periodic stream function appearing in the contravariant representation of the 
magnetic field, B = @’ Vs x VB - x’ Vs x Vl + Vs x VA, where 27@(s) is the toroidal 
flux, 271x(s) is the poloidal flux, and prime denotes d/ds. We adopt the subscript 
notation X, s 8X/&, for X= (R, 2, 2) and IX = (s, 19, [), to denote differentiation of 
the cylindrical coordinates and stream function with respect to the local flux 
coordinate system variables. Here, 0 is a poloidal angle and [ = 4 is the cylindrical 
toroidal angle. The cylindrical components of the magnetic field B are B,= 
B’Xe + BrXc for X= (R, Z) and B, = RB5. (The subscripts on components of B 
denote covariant components and should not be confused with the differentiation 
operation on the coordinates X.) Variations of Eq. (2) with respect to R, Z, and ;1 
yield components of the MHD equilibrium equation, (V x B) x B-VP = 0. (An 
additional constraint energy, discussed in [l], must be minimized along with W to 
uniquely specify the poloidal angle 8 which will yield optimally convergent Fourier 
spectra for R and Z. Other prescriptions for 0 are possible [2-41.) 

The first differencing scheme considered here will be denoted (I) and was 
discussed in [l]. In scheme (I), Eq. (2) was evaluated with R, Z, A = A/@‘, and 
I = x’/@’ on the set of integer radial nodes sj = (j - 1) ds, where ds = l/(N, - 1 ), 
j= 1, . ..) N,, and R(sj) 3 Rj, etc. The toroidal flux gradient @’ and the Jacobian xg 
were both evaluated on the half-integer grid, sj+ 1,2 f (sj+ sj+ ,)/2, and the zoning 
@’ cc s was used. Conservative differencing of the Jacobian was used, 

a+ 112 = ri,+ 1/2q+ 112 _ ).;+ l/Q-{+ 112, (3) 

where r = iR2, Xi+1/2=(x~+X~f1)/2, and X~+1j2=(Xi+1-Xj)/As, for 8 
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X== (r, Z). If these differencing rules are used, the discrete version of Eq. (2) then 
becomes 

where 

6; = [(L - A,)X, + (1 + A,)rc,]‘, 

and X= (R, Z). 
The discrete MHD forces should in principle result from taking 

(4a) with respect to the nodal values of R, 2, and A. For examp 
forces obtained in this way are 

where 

(SC) 

Here, the brackets ( ) represent the following averaging operator over a 
radial mesh points: 

(A)‘- 
i 

j+ l/2 + Aj- l/2), 

‘(A ANsp1i2 j#l,N, 

> j = NI. 
(S(d) 

Two features of Eqs. (5) lead to poor spatial convergence properties for 8’ when 
scheme (I) differencing is used. One is the appearance of J 
than the more accurate averaged quantity K E (@I/&) j ( 
the low-order approximation (in As) for (cF)~/& at the plasma boundar 
u@wY/aN~ = [TewJi1 Ns-1/2. The implementation of scheme (I) us 
replaced J by K (providing better resolution near the magnetic axis) and 
extrapolated the last two half-grid values of (W)‘/& to increase, to second order 
in As, the accuracy of the boundary value for this quantity. Both of these local 
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changes to the discrete forces imply that the discretized W given in Eq. (4a) is 
strictly minimized only as As -+ 0. 

The inaccuracies intrinsic to scheme (I) are resolved by representing 2 on the 
half-mesh grid [2, 51. Now the force Fi+‘12 is proportional to (CD’)“/& evaluated 
at 3+112. Therefore, no extrapolation for Fn is required at the plasma boundary, 
and accurate discrete representations for the forces can be obtained directly from 
first principles by differentiating the discretized energy, W. This improved radial 
differencing scheme for A has also been incorporated into a recent spectral code [6]. 

To ensure temporal stability, Eq. (4) must be recast to represent the toroidal 
magnetic field term B, arising from R2 on the half-mesh. Without this form of 
differencing, a numerical interchange instability results near the magnetic axis. This 
scheme, denoted here as (IIA), was first used successfully in [2]. There, the identity 
R”l& = &lr2, where z = Re Z, - R, Z, is the two-dimensional area element, was 
used to evaluate &Bi on the half-grid as follows: 

In Eq. (6a), both & and 7 are differenced conservatively, as given by the rule in 
Eq. (3). Note that all quantities on the right of Eq. (6a) are evaluated naturally 
(i.e., without recourse to the averaging brackets operator defined in Eq. (5d)) at 
radial half-mesh points. (The quantities Ze and I, are defined following Eq. (2).) This 
feature allows the present discretization to accurately resolve radial derivatives of 
the components of B. Hence, an accurate representation of localized parallel 
currents can be expected [6, S] with decreasing mesh size. 

The remaining terms that make up JgB” are discretized as follows: 

[($)X 
; +2(&)x x + (z2)x2]j+1’2 0 r 0 5 (6b) 

(Jf Y) j+l12=~[(xy)j+(xy)i+l]. (6~) 

Recall that X denotes either R or Z. 
A slight variation of this scheme, denoted (IIB), can eliminate the z2 

denominator in Eq. (6a). The quantity JgB2 is recast as the equivalent expression, 

(7) 

where z,=uBZs-usZ8, b,=lcu,+leui, b,=l,Z,i-l,Z,, and u=ln /RI. Note the 
symmetric role of u (which is related to the cylindrical Green’s function) and Z in 
this representation. In contrast to scheme (IIA), ,,&/T~ is now replaced by z;‘, and 
the helical terms (bz) arising from R, are combined naturally with the toroidal field 
term (Zj). The finite-difference version of Eq. (7) is similar to Eq. (6) with T;* *‘2 
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differenced conservatively and with the discrete forces containing terms of order 
q23 in contrast to rC3 terms for the scheme (II A) forces. This yields slightly 
improved spatial and temporal convergence properties when scheme (II 
for systems with weak helical axes. 

Schemes (IIA) and (IIB) show markedly improved radial convergence properties 
as compared with scheme (I) when applied to configurations with near1 
magnetic axes. However, they often exhibit poor temporal convergence an 
resolution for systems with strong helical axes in which the (X,)” terms in 
are significant. When scheme (II) differencing is u for such systems, the r profile 
computed from the zero-current condition [7], . Vi) = 0, is found to deviate 
from its correct linear dependence on @ near s = This results from a numerical 
discretization error and thus persists even as As + 0. specifically, it is the result of 

inaccurate differencing of & and g,; near the magnetic axis when scheme (II) is 
used. To correct this, the dominant analytic behavior of R and Z near s = 0 must 
be correctly represented. Let X denote either R or Z. Then, X is 

where 

This separation into even and odd poloidal harmonics makes ex 
nanalytic dependence of X on the toroidal flux @ near the m 
cause X, and X, are individually analytic near s = 0, they both 

expansions [9, lo] in CD. Thus, when flux zoning s CC @ is used (a 
s = 0), these two analytic functions may be differenced and s 
s mesh to obtain accurate half-mesh approximations for bo 
and function values, even though the composite quantity X 
property. The area element t = R,Z, - R,Z, XIQW assumes t 
form ,i+ b'2=z{+li2+2:+1/2, where 

~i+li* = ;(R,,Z, - R,Z,,)j+ 112, (9a) 

71- Q(J?%> and therefore z0 gives the dominant 
ian near the magnetic axis. Note that, with the choice o 

the modes with nz d 3 that make up X, and X, are linear functions of s near s = 0. 
Therefore, the contribution to Eq. (9) from ese modes is represente urately 
by this finite-difference scheme. (This shoul be compared with the zoning 



402 HIRSHMAN, SCHWENN, AND NtiHRENBERG 

used in scheme (I), where only the m = 0, 1 mode contributions to z are 
correctly represented.) The half-mesh sum rule for products, given in Eq. (6c), 
applies in Eq. (9). Also, X’,’ ‘I2 = X$ iI2 + Aj+ 1,2XiB+ iI2 and 2:’ ‘I2 = Xi,+ If2 + 

&j+ l/2 Xj+ ‘I2 for X= (R, 2). The explicit extraction and accurate differencing of 
the domi&t r0 term in Eq. (9) seem to be responsible for the stability of the 
present scheme (III) in response to numerical interchanges when half-mesh 
differencing for il is used. The differencing of the metric tensor elements gEs- 
R, R, + Z,Z, is straightforward: 

+ ROE R,, + Z,, Z,, + Z,, Z,p)j+ 112 + Sj + l/Z(Roa ROD + Z,, Zop)j+ l/2, (10) 

Here, X, = 8X/& for IX= (0, [). Note that the metric element gsi is dominated for 
small values of s by the term varying as ,/Y~+ 1,2 in Eq. (10). The inability of scheme 
(II) differencing to accurately represent this nonanalytic behavior of g,[ is 
responsible for the poor resolution of the I profile mentioned before. 

The scheme (III) differencing just described represents a compromise between an 
extremely accurate treatment of the radial dependence of X and an almost complete 
neglect of the analytic behavior of X near the axis. The former case would require 
the extraction of a factor @ m’2 for each poloidal mode. This procedure is tedious to 
implement numerically [lo] and results in a degradation in computational speed 
and stability. The latter case is typified by schemes (I) and (II). 

3. TREATMENT OF THE MAGNETIC AXIS CRITICAL POINT 

The numerical treatment of the magnetic axis (coordinate critical point) at s = 0 
depends on the radial behavior (zoning) of Q(s) near the axis. The m=O 
components of R and Z (denoted X) have the following asymptotic behavior 
as s-0: 

X(s) = X(0) + @X’(O) + . . ‘. (11) 

For flux zoning (@ CC s), Eq. (11) can be used to obtain the linear extrapolation 
X(0) = X(ds) + [X(ds) - X(2ds)], whereas for @ cc s2, X(0) = X(ds) is adequate to 
obtain second-order accuracy in As. The asymptotic behavior of the components of 
R and Z for m > 2 near the axis is imposed by requiring that X(As) = X(~A.S)/~~” 
for @ cc s or X(As) N 0 for @ cc s2. 

To improve the temporal stability of the numerical scheme used to solve the 
MHD force equations, it is useful to accelerate the convergence of the magnetic 
axis, X(0). To accomplish this acceleration, the m = 0 components of R and Z 
(denoted XO(s, [)) are written 

X0(% i) =X,(0, i)(l - a+ ms, 0. (121 
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ere, TO(O, i) = 0 and 6 = B(S)/@ 1). Varying the magnetic energy with respect to 
X,(0, <) yields the cross-section averaged force equation: 

F(O)=[(l-@F&, 

where F, is the &averaged MHD force at the point (s, [). Since the hig 
radial derivative term in F, can be written 

0.3 

0.4 

0 i 

- 0.1 

- 0.3 I 
7 

(a) 

Cd) 

FIG. 1. Flux surfaces for the ATF device at (8) =0.02X, on a mesh with As= Q: (a) calculated by 
using scheme (I), toroidal angle 4 =O; (b) scheme (I), d=rc/N, (NF= 12); (c) scheme (III), 4 =O; 
(d) scheme (III), q5 = x/NF. 
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Eq. (13) can be integrated by parts to yield 

F(O)- - [Dxxds 

Therefore, the eigenvalue in Eq. (15) is A,, = -1 D,, ds, which is smaller by As2 than 
the eigenvalues of the difference representation of Eq. (14). Thus, the temporal 
evolution of X,(0, {) can be accelerated by As-* 9 1 without violating the Courant- 
Friedrichs-Lewy (CFL) numerical stability criterion. 

4. NUMERICAL EXAMPLES 

The spatial convergence properties for the various schemes discussed in Section 2 
are compared in this section. Since these properties are similar for schemes (II) and 

0.3 

0.1 

0 

-0.1 

7 -0.3 L L 
r I I 

(b) 

I I I I 

1.3 1.5 1.7 1.9 2.1 1.3 1.5 1.7 i.9 2.1 

R 

FIG. 2. Same as Fig. 1, with As= &. 
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(ITT), which both use half-mesh zoning for A, we present only the results from the 
VMEC code [S] based on scheme (III) differencing. The equilibrium calcuiations 
described in this section have been performed by using the radial zoning 

propriate to the respective differencing scheme. For scheme 
(s x @) yielded the best accuracy and most rapid temporal 

( 
c 

contrast, Q1 zoning (s cc @) was preferable for schemes (II) and (Till). In generai, 
the computational time tcpu increased with the number of radial mesh points N,! as 
t cpu - (NJP> where p 5 2, but was nearly independent of the type of differencing 
scheme used. 

Figures Ii and 2 compare the flux surfaces for a high-pressure ((8) - 0.025) 
Advanced Toroidal Facility (ATF) equilibrium [ 111, calculated by using scheme 
(I) and scheme (III), for the two toroidal cross sections (b = 0 and 4 = r/N,. Here, 
M,= I2 is the number of toroidal field periods for ATF. Figure 1 was computed by 
using the coarsest radial grid (ds = $), and Fig. 2 shows the results for the finest 
mesh (ds = 8). It can be seen that the Shafranov shift and interior elongation are 

dy quite accurately represented on the coarse grid for scheme (III) diff~r~~c~~~. 
of these quantities undergo substantial changes from the coarse to the fine 

mesh for the scheme (I) case. Even on the finest mesh considered here, however, 
scheme (I) results are not yet well converged. This can be seen even more clearly 
in Figs. 3 and 4, which depict the convergence with radial mesh spacing of various 
equilibrium quantities. Figure 3 shows a convergence plot for the magnetic energy, 
W. Note that the la,/ parameter, defined in Eq. (I), is just the slope of the curves 
in Fig. 3, and that Iu:I b jx:,rI. In Fig. 4, the convergence for the mean magnetic 
axis, R,,(Q), and the peak pressure, p(O), are shown. Once again, the relatively 
slower convergence of the scheme (I) results is apparent. 

To demonstrate the effect of a strong helical axis on the spatial convergence 

FIG. 3. Magnetic energy, W, vs square of the mesh spacing, As’, for the ATF equilibrium ir! Fig. 1. 
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I I I 
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1.70 I I I I I 
4132 d/24 4/16 

I 7.2 
l/8 

As 

FIG. 4. Mean magnetic axis position, R,(O). and peak pressure, p(O), vs square of the mesh spacing, 
A.?; for the ATF equilibrium in Fig. 1. 

properties of the various differencing schemes, we considered the NF= 4, A = 10 
heliac configuration described in [12]. Convergence sequences for the rotational 
transform at the magnetic axis, z(O), and the axis position R,,(O) are shown in 
Fig. 5 for a plasma with (8) = 0.02. There is considerable variation with the mesh 
spacing As for the scheme (I) results, especially for z(0). It is even difficult to predict 
an asymptotic value for z(0) from the scheme (I) data for As > A. 

0 SCHEME I 
. SCHEME m - 4.19 

1 

1.40’ 446 
i/64 i/32 i/24 i/i6 l/8 ’ 

As 

FIG. 5. Iota at plasma axis [z(O)] and plasma edge [z(l)] vs square of the mesh spacing, ds’, for 
the case of an equilibrium with strong helical axis. 
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5. CONCLUSIONS 

Several schemes for discretizing the MHD forces have been compare Blew 

differencing scheme has been described that yields very accurate spatial resolution 
while remaining amenable to standard temporal descent solution methods. 
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